
This article was downloaded by: [Thammasat University Libraries]
On: 14 March 2012, At: 23:45
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Combustion Theory and Modelling
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tctm20

An accurate method to implement boundary
conditions for reacting flows based on characteristic
wave analysis
Watit Pakdee a & Shankar Mahalingam b
a Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO,
80309, USA
b Department of Mechanical Engineering, University of California, Riverside, CA, 92521,
USA

Available online: 29 Jul 2009

To cite this article: Watit Pakdee & Shankar Mahalingam (2003): An accurate method to implement boundary conditions
for reacting flows based on characteristic wave analysis, Combustion Theory and Modelling, 7:4, 705-729

To link to this article:  http://dx.doi.org/10.1088/1364-7830/7/4/006

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss, actions,
claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tctm20
http://dx.doi.org/10.1088/1364-7830/7/4/006
http://www.tandfonline.com/page/terms-and-conditions


INSTITUTE OF PHYSICS PUBLISHING COMBUSTION THEORY AND MODELLING

Combust. Theory Modelling 7 (2003) 705–729 PII: S1364-7830(03)63034-2

An accurate method to implement boundary
conditions for reacting flows based on characteristic
wave analysis

Watit Pakdee1 and Shankar Mahalingam2,3

1 Department of Mechanical Engineering, University of Colorado at Boulder, Boulder,
CO 80309, USA
2 Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA

E-mail: shankar.mahalingam@ucr.edu

Received 2 May 2003, in final form 9 September 2003
Published 24 October 2003
Online at stacks.iop.org/CTM/7/705

Abstract
A characteristic wave analysis previously developed to specify boundary
conditions for chemically reacting flows with realistic thermodynamic
properties is derived with an alternative set of primitive variables. In a
multicomponent reacting flow, it is sufficient to consider the time-integration of
all species’ mass fractions, excluding one. This results in a primitive variables
vector that contains one element less. The impact of this choice on the resulting
characteristic equations and treatment of numerical boundary conditions are
presented. The improved accuracy in the treatment of boundary conditions is
assessed via three test problems including non-reacting and reacting situations.
The method presented is found to provide accurate results as it allows acoustic
waves, pressure waves and vortices to propagate through the domain without
discernible reflection. Furthermore, the method eliminates the drift of the mean
pressure that tends to occur over long integration times when the boundary is
treated inaccurately.

1. Introduction

Methods to implement boundary conditions for numerical solutions of Navier–Stokes equations
in chemically reacting flows have been of interest in a number of recent studies. Algorithms
based on high-order schemes can provide spectral-like resolution and allow very low numerical
dissipation [1–3]. However, their potential application would be constrained to only periodic
boundary conditions if boundary treatment to impose general physical boundary conditions
is not precise. Poinsot and Lele [4] defined a boundary condition as a numerical boundary
condition when no dependent variable is explicitly imposed at the boundary. In such situations,
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706 W Pakdee and S Mahalingam

the number of physical boundary conditions is smaller than the number of primitive variables.
Numerical boundary conditions are then needed to solve the problem numerically [4]. These
boundary conditions are required to prevent spurious wave reflection at the boundaries.
Thompson [5] developed a formulation to treat boundary conditions for systems of hyperbolic
equations, such as Euler equations, using characteristic theory in which the different waves
moving across boundaries are analysed. Extensive studies of this characteristic wave analysis
have been conducted for Euler equations [1, 2, 6–8]. Based on this analysis Poinsot and Lele
[4] developed a method called Navier–Stokes characteristic boundary conditions (NSCBCs)
specifically for the Navier–Stokes equations. The main concept is based on the characteristic
property of hyperbolic systems coupled with the idea that Navier–Stokes equations reduce to
Euler equations when the viscous terms are set to zero. Baum et al [9] subsequently extended
the NSCBC method to multicomponent reactive flows. All the derivations described above
were based on perfect gas flows. Further extension of the method has been presented by
Okong’o and Bellan [10] for real gas mixtures.

To implement the characteristic method, vectors of conservative and primitive variables
are first determined. The choice of the set of primitive variable vector depends on practical
applications or problems of interest. Baum et al [9] used density ρ, temperature T , velocity
components u1, u2, u3, and species mass fractions Y1, Y1, . . . , YN for perfect gas with
inhomogeneous, variable thermodynamic properties. In this paper, instead of temperature
T , we propose to use pressure p as a primitive variable. This requires modification of the
characteristic analysis that is considered in this work.

First, we consider the primitive variable vector U = (ρ, p, u1, u2, u3, Y1, Y2, . . . , YN )
that includes all N species in the reacting flow mixture. The NSCBC method is derived and
results are similar to [9], with differences directly attributable to the different choice of the
primitive variable vector. In a multicomponent reacting flow, noting that the sum of the mass
fractions is unity, it is sufficient to consider the time-advancement of all species mass fractions,
excluding one. Often, nitrogen, N2, appears in excess and its mass fraction is not computed
explicitly. Instead, it is obtained via the constraint that the sum of mass fractions is unity. In
this paper, for convenience, the N th species is taken to be N2. This choice results in a primitive
variable vector that contains one element less, namely, YN . Consequently, the NSCBC method
requires modification. This forms the focus of this paper. We evaluate the performance of the
NSCBC method that ignores this subtlety against the modified method to demonstrate resulting
inaccuracies in the computed solution.

Section 2 presents the alternative method derived for the chosen primitive variables for the
fully compressible, chemically reacting, Navier–Stokes equations. The section also describes
modification to the formulation to take into account the case in which YN2 is excluded and
computed separately. A detailed mathematical derivation of the method appears in the
appendix. Procedures to implement boundary conditions are described in section 3. In
section 4, the performance of the method is assessed using test problems. Concluding remarks
are given in section 5.

2. Mathematical formulation

2.1. Characteristic form of Navier–Stokes equations

The system of governing equations includes continuity, Navier–Stokes, energy and species
equations. This system of equations written in tensor form is

∂ρ

∂t
+

∂(ρuj )

∂xj

= 0, (2.1)
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Method to implement boundary conditions 707

∂ρui

∂t
+

∂(ρuiuj )

∂xj

= − ∂p

∂xi

+
∂τij

∂xj

, (2.2)

∂ρet

∂t
+

∂[(ρet + p)uj ]

∂xj

= ∂

∂xi

(uj τij ) − ∂qj

∂xj

, (2.3)

∂ρYκ

∂t
+

∂(ρYκuj )

∂xj

= −∂(ρYκVκj )

∂xj

+ ω̇κ , κ = 1, . . . , N, (2.4)

where uj denotes the j th velocity component along spatial coordinate xj and t is time. The
mass production rate of the κth species is denoted by ω̇κ . The stress tensor, heat flux vector
and diffusion velocities are given, respectively, by

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
, (2.5)

qj = −λ
∂T

∂xj

+ ρ

N∑
κ=1

hκYκVκj , (2.6)

Vκj = −Dκ

1

Yκ

∂Yκ

∂xj

, κ = 1, 2, . . . , N, (2.7)

where Dκ is the diffusion coefficient of species κ , λ and µ are the mixture thermal conductivity
and viscosity, respectively. The quantity et is the total energy per unit mass of the mixture,

et = e +
1

2

3∑
k=1

u2
k, e =

N∑
κ=1

Yκhκ − p

ρ
, (2.8)

where e is the internal energy per unit mass and hκ is the enthalpy of species κ given by

hκ = h0
κ +

∫ T

T0

Cpκ(T
′) dT ′, κ = 1, . . . , N, (2.9)

where h0
κ and Cpκ denote the enthalpy of formation and specific heat of species κ . The mixture

specific heat is given by

C̄p(T ) =
N∑

κ=1

YκCpκ(T ). (2.10)

Pressure, density and temperature are related through the ideal gas equation of state

p = ρRT, (2.11)

where R is the reacting mixture gas constant given by

R = �
W̄

, W̄ =
[

N∑
κ=1

(
Yκ

Wκ

)]−1

, (2.12)

where � is the universal gas constant, W̄ is the average molecular weight of the mixture, and
Wκ is the species molecular weight. Note that R is not a constant, but a function of the local
reacting gas mixture composition.

Next, the hyperbolic portion of the system of governing equations is partly rewritten
in characteristic form in which characteristic waves in the x1 direction are easily identified.
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708 W Pakdee and S Mahalingam

The detailed mathematical derivation is contained in the appendix. We write the system of
equations in primitive form as given by (A.10). From the derivation we obtain

∂U

∂t
+ SL + C = 0,

where the values of Li can be obtained by (A.11) as follows:

L1 = (u1 − c)

(
∂p

∂x1
− ρc

∂u1

∂x1

)
, (2.13)

L2 = u1

(
c2 ∂ρ

∂x1
− ∂p

∂x1

)
, (2.14)

L3 = u1

(
∂u2

∂x1

)
, (2.15)

L4 = u1

(
∂u3

∂x1

)
, (2.16)

L5 = (u1 + c)

(
∂p

∂x1
+ ρc

∂u1

∂x1

)
, (2.17)

Lκ+5 = u1
∂Yκ

∂x1
, κ = 1, 2, . . . , N, (2.18)

where c is the reacting mixture sound speed given by (A.29).
Defining vector d = SL, which is A1(∂U/∂x1) appearing, respectively, in (A.8)

and (A.10):

d =




d1

d2

d3

d4

d5

d6

...

dN+5




≡ SL =




1

c2

(
L2 +

L1 + L5

2

)
L1 + L5

2
L5 − L1

2ρc

L3

L4

L6

...

LN+5




. (2.19)

As given in (A.12) in terms of conservative form, we may now write the system of equations
in terms of d as

∂Ũ

∂t
+ P d + C̃ = 0,

where vector P d can be expressed as

P d =




d1

(P d)2,1

u1d1 + ρd3

u2d1 + ρd4

u3d1 + ρd5

Y1d1 + ρd6

Y2d1 + ρd7

...

YNd1 + ρdN+5




, (2.20)
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Method to implement boundary conditions 709

where

(P d)2,1 =
(

1

2
ukuk +

N∑
κ=1

Yκhκ − C̄pT

)
d1 +

(
C̄p − R

R

)
d2

+ρu1d3 + ρu2d4 + ρu3d5 +
N∑

κ=1

(
ρhκ − p

W̄

Wκ

C̄p

R

)
dκ+5. (2.21)

The energy equation (2.3), with the characteristic term (P d)2,1 replacing the flux term in the
x1 direction, becomes

∂ρet

∂t
+ (P d)2,1 +

∂[(ρet + p)u2]

∂x2
+

∂[(ρet + p)u3]

∂x3
= ∂(uj τij )

∂xi

− ∂qj

∂xj

. (2.22)

If one chooses to compute only (N − 1) mass fractions, it is tempting to write down

(P d)2,1 =
(

1

2
ukuk +

N∑
κ=1

Yκhκ − C̄pT

)
d1 +

(
C̄p − R

R

)
d2

+ρu1d3 + ρu2d4 + ρu3d5 +
N−1∑
κ=1

(
ρhκ − p

W̄

Wκ

C̄p

R

)
dκ+5, (2.23)

where the last summation term ranges from 1 to N − 1. However, this procedure is incorrect
since it ignores the new set of primitive variables implied. Equation (2.23) is the incorrect
expression of (P d)2,1 leading to an incorrect boundary formulation. If we exclude N2 from
the time-advancement process and instead compute YN2 using

YN2 = 1 −
N−1∑
κ=1

Yκ, (2.24)

then it implies that the primitive variable vector is no longer given by (A.15). The new vector is

U = (ρ, p, u1, u2, u3, Y1, . . . , YN−1)
T. (2.25)

The conservative variable vector and the flux vector become, respectively,

Ũ = (ρ, ρet , ρu1, ρu2, ρu3, ρY1, . . . , ρYN−1)
T, (2.26)

F 1 = (ρu1, (ρet + p)u1, ρu2
1 + p, ρu1u2, ρu1u3, ρu1Y1, . . . , ρu1YN−1)

T. (2.27)

Including the YN2 contribution, the total energy e may be rewritten as

e =
N−1∑
κ=1

Yκhκ + YN2hN2 − p

ρ
+

1

2

3∑
k=1

u2
k. (2.28)

Consequently, the terms associated with the derivatives of e with respect to Yκ are modified as

P2,κ+5 = ρ(hκ − hN2) −
N−1∑
κ ′=1

pW̄

(
1

Wκ

− 1

WN2

)
Yκ ′

Cp,κ ′

R
, (2.29)

Q1
2,κ+5 = u1

(
ρ(hκ − hN2) −

N−1∑
κ ′=1

pW̄

(
1

Wκ

− 1

WN2

)
Yκ ′

Cp,κ ′

R

)
, (2.30)

where κ = 1, . . . , N − 1.
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710 W Pakdee and S Mahalingam

Similarly, by following the lines of derivation presented in this paper, the correct form of
(P d)2,1 associated with the characteristic form of the energy conservation equation is finally
deduced to be

(P d)2,1 =
(

1

2
ukuk +

N∑
κ=1

Yκhκ − C̄pT

)
d1 +

(
C̄p − R

R

)
d2 + ρu1d3 + ρu2d4 + ρu3d5

+
N−1∑
κ=1

[
ρ(hκ − hN2) − pW̄

C̄p

R

(
1

Wκ

− 1

WN2

)]
dκ+5. (2.31)

Note from the last term of the above equation, since dκ+5 = u1∂Yκ/∂x1, inaccuracies do not
occur when the mass fraction gradients and/or velocity at the boundary is zero. Thus, to test
the formulation, we examine problems in which the mass fraction gradients at the boundaries
are necessarily non-zero. Further comments pertaining to this issue appear in section 4.

2.2. Characteristic wave specification

The approach used to specify the values of characteristic wave Li for multidimensional Navier–
Stokes equations was introduced by Poinsot and Lele [4]. Wave amplitudes at the boundaries
are determined by examining a locally one-dimensional inviscid (LODI) non-reacting problem.
Values of Li can be specified for chosen boundary conditions based on the LODI relations. The
LODI system is readily obtained by considering the primitive system of equations (A.12) and
neglecting viscous, reactive and transverse terms. The resulting equations (LODI relations) are

∂ρ

∂t
+

1

c2

(
L2 +

L1 + L5

2

)
= 0, (2.32)

∂p

∂t
+

L1 + L5

2
= 0, (2.33)

∂u1

∂t
+

L5 − L1

2ρc
= 0, (2.34)

∂u2

∂t
+ L3 = 0, (2.35)

∂u3

∂t
+ L4 = 0, (2.36)

∂Yκ

∂t
+ Lκ+5 = 0, κ = 1, 2, . . . , N. (2.37)

The time derivative of temperature can be computed by using the above relations and can be
written as

∂T

∂t
− T

c2ρ

[
1 − γ

2
(L1 + L5) + L2

]
− T W̄

N∑
κ=1

Lκ+5

Wκ

= 0. (2.38)

By inverting the definitions of characteristic waves, L′s
i (equations (2.13)–(2.18)), the LODI

relations in terms of gradients are

∂ρ

∂x1
= 1

c2

(
L2

u1
+

1

2

(
L5

u1 + c
+

L1

u1 − c

))
, (2.39)

∂p

∂x1
= 1

2

(
L5

u1 + c
+

L1

u1 − c

)
, (2.40)

∂u1

∂x1
= 1

2ρc

(
L5

u1 + c
− L1

u1 − c

)
, (2.41)
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Method to implement boundary conditions 711

∂u2

∂x1
= L3

u1
, (2.42)

∂u3

∂x1
= L4

u1
, (2.43)

∂Yκ

∂x1
= Lκ+5

u1
, κ = 1, 2, . . . , N. (2.44)

Using the above definitions along with the equation of state, ∂T /∂x1 can be expressed by

∂T

∂x1
= T

c2ρ

[
γ − 1

2

(
L5

u1 + c
+

L1

u1 − c

)
− L2

u1

]
− T W̄

u1

N∑
κ=1

Lκ+5. (2.45)

3. Implementation of boundary conditions

The procedure to implement boundary conditions involves three principal steps.

1. Distinguish the incoming and the outgoing waves on the boundary by determining the sign
of eigenvalues associated with different Li . The number of incoming waves determines
the number of physical boundary conditions needed in order for the problem to be well-
posed. The conservation equations associated with each physical boundary imposed are
eliminated.

2. The outgoing waves can be computed from the information inside the domain. The
incoming waves are expressed as a function of the known outgoing waves by using the
appropriate LODI relations.

3. Combine the remaining conservation equations with the specified Li obtained from step 2
to compute all variables that were not given by physical boundary conditions. The system
of equations is now ready for time integration.

A non-reflecting boundary condition is considered on both lateral boundaries. At the
right boundary, all the Li but L1 are outgoing waves. The characteristic wave amplitudes
associated with the outgoing waves can be computed from solution at interior points and given
by equations (2.14)–(2.18). On the other hand, the boundary condition associated with the
incoming wave L1 is needed. Imposing any one physical boundary condition for the primitive
variables would lead to a well-posed problem [4]. Oliger and Sundström [11] specified constant
pressure at the outlet boundary to ensure well-posedness. However, this technique generates
acoustic wave reflection at the outlet. To avoid this numerical reflection, L1 = 0 may be
considered. However, with this condition, the information on mean pressure that is conveyed
by wave reflection can never be fed back into the computational domain leading to an ill-posed
problem [4]. Due to this problem, we may let small wave reflections back into the domain. As
a result, L1 is defined as [4, 12, 13]

L1 = K(p − p∞), (3.1)

where K is a constant chosen as recommended in [4].
In the case of the left boundary, L1 associated with negative eigenvalue (u1–c) is the only

outgoing wave. Therefore, this characteristic wave amplitude can be computed from solution
at interior points and given by (2.13). All other characteristic wave amplitudes are set to zero.

4. Tests of formulation

The compressible direct simulation code [14] originally developed for computation of perfect
gases with constant specific heats was modified appropriately for this work. Simple Fickian
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712 W Pakdee and S Mahalingam

diffusion is used to model transport and the Lewis number approximation recommended by
Smooke and Giovangigli [15] is employed. Spatial derivatives are discretized using a sixth-
order accurate compact finite difference scheme [2]. A third-order Runge–Kutta scheme is
used to integrate the evolution equations in time.

Three test problems are discussed in the following subsections. Two cases are considered.
In both cases, YN2 is computed via (2.24) and thus its evolution equation is not considered. In
case I, the boundaries are treated by correctly accounting for the implied primitive variable
vector, whereas in case II the boundaries are treated inaccurately via (2.23). Considering
(2.31), as addressed earlier, the term contributing YN2 effects will vanish when gradients of
all the species are zero. Therefore, to distinguish between case I and case II, we set non-
zero gradients of initial mass fractions at the boundaries. In the third problem, the boundary
condition corresponding to case I is applied to the study of the interaction of a pair of counter-
rotating vortices with a premixed flame. This represents a chemically reacting flow problem
unlike the first two test problems.

In most situations, computational domains are chosen so that no significant activity occurs
at the boundary. However, in problems involving convection of a structure within which
significant chemical activity could be occurring, non-zero mass fraction gradients will develop
as the structure exits the computational boundary. This situation occurs, for instance, in a
flame/vortex interaction problem that has been extensively investigated. A review of studies
on this problem can be found in [17]. Even if significant chemical reaction has ceased as
the vortex exits the domain, the physical structure of the vortex could lead to mass fraction
gradients arising in the direction of vortex propagation. Inaccurate treatment of the boundary
could lead to errors as demonstrated through test problems presented in this section.

4.1. One-dimensional acoustic wave propagation

A one-dimensional problem involving acoustic wave propagation towards a non-reflecting
boundary is simulated. The acoustic wave is generated using the following initial
conditions [9]:

u = u0 + A exp

[
−

(
B

x − L/2

L

)2
]

,

p = p0 + ρ0c0(u − u0),

ρ = ρ0 +
ρ(u − u0)

c0
,

T = p

ρR
,

(4.1)

where subscript 0 represents reference quantities. Reference pressurep0 is 101 325 N m−2. The
reference speed of sound c0 and density ρ0 correspond to the quantities based on initial values
at the left boundary. The computed values of c0 and ρ0 are 818.74 m s−1 and 0.227 kg m−3,
respectively. Constants A = 8 m s−1 and B = 5 indicate, respectively, the strength and the
stiffness of the acoustic wave. The width of velocity profile L is one-third of the domain length
in the x direction. The mixture field includes CH4, O2, CO2, CO, H2, H2O, H, and N2. The
mass fractions of these species are initialized as shown in figure 1(a). A subsonic non-reflecting
boundary condition is implemented on both left and right boundaries. We set 129 points in the
x direction over the 5.4 mm domain.

The velocity and the pressure corresponding to acoustic wave propagation moving to the
right of the domain for case I are shown in figures 2 and 3, respectively. Results at a different
value of a reduced time tr = 2c0t/L are shown. It can be seen that the acoustic wave exits the
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Figure 1. Initial profiles of mass fractions for two test problems: (a) one-dimensional and
(b) two-dimensional cases.
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Figure 2. Velocity wave propagation (m s−1) for case I. In all cases, the scale on the y-axis
is unchanged to facilitate direct comparison. (a) tr = 0.0, (b) tr = 0.427, (c) tr = 0.855,
(d) tr = 1.068, (e) tr = 6.471, ( f ) tr = 12.957.
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Figure 3. Corresponding pressure (N m−2) for case I. In all cases, the scale on the y-axis is
unchanged. (a) tr = 0.0, (b) tr = 0.427, (c) tr = 0.855, (d) tr = 1.068, (e) tr = 6.471,
( f ) tr = 12.957.

domain with no discernable reflections. Case II results are given in figures 4 and 5. Similar
to case I, the waves exit the domain without problems. However, inaccuracies are observed
a substantially long time after the waves exit the domain. The mean pressure decreases (figures
5(e) and ( f )), while the mean velocity increases (figures 4(e) and ( f )).

4.2. Two-dimensional vortex pair propagation

The boundary condition derivation based on a one-dimensional formulation may lead
to inaccuracies in a two-dimensional setting [10, 16]. Therefore, as a two-dimensional
representative problem, we generated a pair of counter-rotating vortices on a chemically
inhomogeneous, uniform flow u0 of 25 m s−1. The initial velocity components associated
with a pair of vortices are generated by using the superimposed stream function ψ [4, 10]

u1 = ∂ψ

∂x2
, u2 = − ∂ψ

∂x1
, (4.2)

where

ψ = C exp

[
− (x1 − x1v)

2 + (y1 − y1v)
2

2r2
v

]
, (4.3)
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Figure 4. Velocity wave propagation (m s−1) for case II. In all cases, the scale on the y-axis
is unchanged to facilitate direct comparison. (a) tr = 0.0, (b) tr = 0.427, (c) tr = 0.855,
(d) tr = 1.068, (e) tr = 6.471, ( f ) tr = 12.957.

where xv and yv are the coordinates of each vortex centre. The vortex strength is denoted
by C. The initial uniform temperature is 300 K. The corresponding initial pressure field is
given by [4]

p = p∞ + ρ
C2

r2
v

exp

[
− (x1 − x1v)

2 + (y1 − y1v)
2

r2
v

]
. (4.4)

The mass fractions of seven species are initialized as shown in figure 1(b). The computational
domain is 3 cm × 3 cm with a subsonic non-reflecting boundary condition on the lateral
boundaries, and a periodic boundary condition at the top and bottom boundaries. The
computational domain is discretized by 256 × 256 points.

The results for both cases are plotted from initial time represented by (a) and progressively
evolve as shown in (b)–(d). The results at a different value of reduced time tr = 2c0t/L, where
L is the length of the domain, are shown. Case I results are displayed in figures 6–8. Field
variable evolution of vorticity, pressure and YCH4 is shown, respectively, in figures 6–8. It is
found that all the field variables propagate out of the domain with no noticeable numerical
reflections. For case II, evolution of vorticity, pressure and YCH4 is illustrated in figures 9–11,
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Figure 5. Corresponding pressure (N m−2) for case II. In all cases, the scale on the y-axis is
unchanged. (a) tr = 0.0, (b) tr = 0.427, (c) tr = 0.855, (d) tr = 1.068, (e) tr = 6.471,
( f ) tr = 12.957.

respectively. As in case I, vorticity and YCH4 exit the domain freely. However, it appears that
the propagation of vorticity is faster than in case I due to an increase in the mean x-component
velocity in the entire domain. The values of velocity become higher than the initial value of
the mean uniform flow. This is consistent with the incorrect behaviour observed in the one-
dimensional case II in which drift of the mean velocity occurs. Moreover, figure 10(d) exhibits
perturbations after the vortex exits the domain. Time variations of the instantaneous and the
mean pressures are examined at different locations. These locations are shown in figure 11
as indicated by solid circles. Results are depicted in figures 12(a) and (b) for cases I and II,
respectively. Unlike case I, in which overall pressure stays close to atmospheric pressure, in
case II the overall pressure decreases throughout the domain during the vortex propagation
and continues to decrease after the vortex exits the domain. To gain more insight into these
results, the acoustic energy density is considered and is defined by [18, 19]

ED = p2

2ρc2
+

ρ(u2
1 + u2

2)

2
, (4.5)

where the first term on the right-hand side is the acoustic potential energy density and the
second term is the acoustic kinetic energy density. Figure 13 displays time variations of the
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Method to implement boundary conditions 717

Figure 6. Contours of time evolution of vortex pair for case I. The contours range from −160 000
to 160 000 with 10 equispaced levels. (a) tr = 0.0, (b) tr = 3.0, (c) tr = 5.0, (d) tr = 12.5.

acoustic energy density and its two components. Figures 13(a)–(c), which are for case I,
show the acoustic energy density, its potential and kinetic components, respectively. With
the same arrangement, figures 13(d)–( f ) represent case II. In this case, the acoustic energy
density decreases with time. This result is consistent with the decrease in pressure throughout
the simulation time. It is also noted that the overall kinetic acoustic energy density is higher
in case II than in case I. This corresponds to the drift of the mean velocity discussed earlier.
The inaccurate results are due to inaccuracies in implementing boundary conditions. The
results indicate that ignoring the YN2 contribution to implement boundary conditions leads to
unacceptable errors. These errors are suppressed if the species mass fraction gradient at the
boundary is zero or very small. The errors become apparent when the mass fraction gradient
at the boundary is significant.

4.3. Application to premixed flame

As a final application that includes combustion, the correct treatment of the boundary conditions
developed for multicomponent reacting flows is applied to the problem of a counter-rotating
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718 W Pakdee and S Mahalingam

Figure 7. Contours of time evolution of pressure for case I. The contours range from 94 433 to
102 075 with 11 equispaced levels. (a) tr = 0.0, (b) tr = 3.0, (c) tr = 5.0, (d) tr = 12.5.

vortex pair interacting with a premixed flame. The fuel utilized is representative of the pyrolysis
products of wood. It includes CO, H2, CH4 and CO2. A reduced four-step chemical kinetic
scheme is used to model the combustion of pyrolysis gas and air in a premixed flame [20].
A steady one-dimensional laminar premixed flame is computed using CHEMKIN [21]. The
mass fractions of the major constituents of the unburnt premixed mixture are YCO = 0.082,
YH2 = 0.009, YCH4 = 0.014, YCO2 = 0.130, YO2 = 0.178, and YN2 = 0.586 for an equivalence
ratio of unity. The computed flame speed is 65 cm s−1 [20]. A pair of counter-rotating vortices
generated by using equations (4.2) and (4.3) is initialized in a two-dimensional domain and
allowed to interact with the initially planar flame. The 3.0 cm × 3.0 cm domain is discretized
using a 360 × 360 uniform grid. The boundary conditions are periodic in the y direction. In
the x direction, the subsonic boundary condition is implemented in which the inlet velocity
and the temperature are imposed and a non-reflecting boundary condition is prescribed at the
outlet. A schematic diagram illustrating the problem is given in figure 14.

The instantaneous data are extracted and investigated. Contours of YCH4 , YCO2 and vorticity
at the same instant are plotted in figure 15. At this time, the vortex is clearly passing through the
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Method to implement boundary conditions 719

Figure 8. Contours of time evolution of CH4 mass fraction for case I. The contours range from 0
to 0.2 with 10 equispaced levels. (a) tr = 0.0, (b) tr = 3.0, (c) tr = 5.0, (d) tr = 12.5.

exit boundary. Figure 15(a) shows contours of YCH4 and YCO2 . As CH4 is completely consumed
within the reaction zone, its gradient remains zero at the outflow boundary. On the other hand,
non-zero gradients of the primary combustion product YCO2 are evident at the exit plane.
Therefore, this situation represents an appropriate application for testing boundary conditions.
The vortex shown in figure 15(b) exits the domain smoothly without wave reflections. It travels
without creating perturbations during the vortex propagation within the domain as well as after
the vortex exits the domain.

5. Conclusions

An accurate method to specify boundary conditions based on characteristic wave analysis for
gaseous reacting flows with realistic thermodynamic properties is presented. The formulation
of the boundary treatment is derived from a set of primitive variables different from those
previously published [9]. Different forms of conservative system, primitive system as well
as the LODI relations are obtained. The system of governing equations is rewritten into
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720 W Pakdee and S Mahalingam

Figure 9. Contours of time evolution of vortex pair for case II. The contours range from −160 000
to 160 000 with 10 equispaced levels. (a) tr = 0.0, (b) tr = 3.0, (c) tr = 5.0, (d) tr = 12.5.

characteristic form in which different waves crossing the boundaries can be analysed.
Numerical boundary conditions in the form of characteristic waves are specified by considering
the LODI relations.

A characteristic wave analysis previously developed to specify boundary conditions for
inhomogeneous flows with realistic thermodynamic properties is derived with an alternative
set of primitive variables. In a multicomponent reacting flow, it is sufficient to consider the
time-integration of all species’ mass fractions, excluding one. This work considers excluding
the N2 mass fraction from time-integration. Instead, the mass fraction of N2 is computed
by the constraint that summation of all species’ mass fractions is unity. This results in a
primitive variable vector that contains one element less. The impact of this choice on the
resulting characteristic equations and treatment of numerical boundary conditions are derived
and assessed.

The improved accuracy in the treatment of boundary conditions is assessed via three test
problems. A one-dimensional test problem involving acoustic wave propagation in a non-
uniform mixture of gases is investigated. Following this, a two-dimensional test problem of a
counter-rotating vortex pair convecting through a non-uniform mixture of gases is studied.
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Method to implement boundary conditions 721

Figure 10. Contours of time evolution of pressure for case II. The contours range from 94 433 to
102 075 with 11 equispaced levels. (a) tr = 0.0, (b) tr = 3.0, (c) tr = 5.0, (d) tr = 12.5.

The third problem chosen involves combustion representing the interaction of a counter-
rotating vortex pair and a premixed flame. The method is found to treat the boundary
conditions accurately as the waves and vortex exit the domain without any significant reflection.
Furthermore, the method eliminates drift of the mean pressure that tends to occur over long
integration times when the boundary is treated inaccurately. A formulation that neglects the
modifications discussed in this paper leads to inaccuracies both in the vicinity of the boundary
and the rest of the computational domain. The mathematical formulation reveals that the
inaccuracies are naturally suppressed if the mass fraction gradients and/or velocity at the
boundary is zero.
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722 W Pakdee and S Mahalingam

Figure 11. Contours of time evolution of CH4 mass fraction for case II. The contours range from
0 to 0.2 with 10 equispaced levels. (a) tr = 0.0, (b) tr = 3.0, (c) tr = 5.0, (d) tr = 12.5.

Appendix. Derivation for characteristic form of Navier–Stoke equations

The fundamental procedure is based on characteristic wave analysis for Euler equations
presented by Thompson [1, 5]. Let U be a vector of time-dependent primitive variables and
Ũ correspond to a vector of time-dependent conservative variables. Navier–Stokes equations
can be reduced to Euler equations by neglecting viscous terms. The system of equations can
be written in vector form as

∂Ũ

∂t
+

∂F 1

∂x1
+

∂F 2

∂x2
+

∂F 3

∂x3
+ D̃ = 0, (A.1)

where Fk is the flux vector in the k coordinate direction. Vector D̃ contains terms which do
not contain any spatial derivatives of U components.

In what follows we consider characteristic analysis in the x1 direction. Thus, all terms
not involving derivatives of Ũi in the x1 direction are grouped together. Equation (A.1) can be
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Method to implement boundary conditions 723

Figure 12. Time variations of the mean and instantaneous pressures at different locations in the
domain for case I (a) and case II (b). The locations are indicated in figure 11.

written as
∂Ũ

∂t
+

∂F 1

∂x1
+ C̃ = 0, C̃ = ∂F 2

∂x2
+

∂F 3

∂x3
+ D̃. (A.2)

We form
∂Ũ

∂t
= P

∂U

∂t
, (A.3)

where P is a Jacobian matrix whose ith row, j th column element

pij = ∂Ũi

∂Uj

. (A.4)

We can also form
∂F 1

∂x1
= Q1 ∂U

∂x1
, (A.5)

where Q1 has elements

q1
ij = ∂F 1

i

∂Uj

, (A.6)
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724 W Pakdee and S Mahalingam

Figure 13. Time variations of the mean and instantaneous acoustic energy densities: total
(a) and (d), potential (b) and (e), kinetic (c) and ( f ) at different locations for case I (a)–(c) and
case II (d)–(f ). The locations are indicated in figure 11.

Premultiplying (A.2) by P −1, the primitive form becomes
∂U

∂t
+ A1 ∂U

∂x1
+ A2 ∂U

∂x2
+ A3 ∂U

∂x3
+ D = 0 (A.7)

or
∂U

∂t
+ A1 ∂U

∂x1
+ C = 0, C = A2 ∂U

∂x2
+ A3 ∂U

∂x3
+ D, (A.8)

where

Ak = P −1Qk, C = P −1C̃, D = P −1D̃. (A.9)

In terms of S whose columns are the right eigenvectors of A1, (A.8) is recast as
∂U

∂t
+ SL + C = 0, (A.10)
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Method to implement boundary conditions 725

Figure 14. Schematic of two-dimensional premixed flame–vortex interaction. Shown are
equispaced contours of vorticity (——) and reaction rate of methane (- - - -). The vortex pair
travels to the right. The planar premixed flame speed is 65 cm s−1 for an equivalence ratio of unity.

Figure 15. Contours of (a) mass fractions of CH4 (——) and CO2 (- - - -) and (b) contour of
vorticity. With 12 equispaced levels, contours of YCH4 and YCO2 range from 0.002 to 0.015 and
from 0.04 to 0.14, respectively. Vorticity contour ranges from −39 734 to 39 734 with 12 equispaced
levels.

where the vector L has components of characteristic wave amplitudes Li defined as

Li = λil
T
i

∂U

∂x1
, i = 1, . . . , m, (A.11)

where m is the number of primitive variables. In conservative form the system of equations
becomes

∂Ũ

∂t
+ PSL + C̃ = 0. (A.12)

For our system of equations which includes continuity, Navier–Stokes, energy and species
equations, conservative variables are written in vector form as

Ũ = (ρ, ρet , ρu1, ρu2, ρu3, ρY1, . . . , ρYN)T. (A.13)
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726 W Pakdee and S Mahalingam

The flux vector is given by

F 1 = (ρu1, (ρet + p)u1, ρu2
1 + p, ρu1u2, ρu1u3, ρu1Y1, . . . , ρu1YN)T. (A.14)

The vector of primitive variables chosen corresponds to

U = (ρ, p, u1, u2, u3, Y1, . . . , YN)T. (A.15)

The Jacobian matrix P constructed by (A.4) is

P =




1 0 0 0 0 0 · · · · · · · · · 0
P2,1 P2,2 ρu1 ρu2 ρu3 P2,6 P2,7 · · · · · · P2,N+5

u1 0 ρ 0 0 0 0 · · · · · · 0
u2 0 0 ρ 0 0 0 · · · · · · 0
u3 0 0 0 ρ 0 0 · · · · · · 0
Y1 0 0 0 0 ρ 0 · · · · · · 0
Y2 0 0 0 0 0 ρ 0 · · · 0
...

...
...

...
...

...
. . .

. . .
. . .

...

YN−1 0 0 0 0 · · · · · · 0 ρ 0
YN 0 0 0 0 0 · · · · · · 0 ρ




, (A.16)

where elements

P2,1 = 1

2
ukuk +

N∑
κ=1

Yκhκ − C̄pT , (A.17)

P2,2 = C̄p

R
− 1, (A.18)

P2,κ+5 = ρhκ −
N∑

κ ′=1

p
W̄

Wκ

Yκ ′
Cp,κ ′

R
, κ = 1, . . . , N. (A.19)

Then we may compute P −1, which is given by

P −1 =




1 0 0 0 0 0 · · · · · · · · · 0

P −1
2,1

1

P2,2

−u1

P2,2

−u2

P2,2

−u3

P2,2
P −1

2,6 P −1
3,6 · · · · · · P −1

2,N+5

−u1

ρ
0

1

ρ
0 0 0 0 · · · · · · 0

−u2

ρ
0 0

1

ρ
0 0 0 · · · · · · 0

−u3

ρ
0 0 0

1

ρ
0 0 · · · · · · 0

−Y1

ρ
0 0 0 0

1

ρ
0 · · · · · · 0

−Y2

ρ
0 0 0 0 0

1

ρ
0 · · · 0

...
...

...
...

...
...

. . .
. . .

. . .
...

−YN−1

ρ
0 0 0 0 · · · · · · 0

1

ρ
0

−YN

ρ
0 0 0 0 0 · · · · · · 0

1

ρ




, (A.20)D
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where elements

P −1
2,1 = −P2,1 + ukuk +

∑N
κ=1 Yκ(hκ − ∑N

κ ′=1(p/ρR)(W̄/Wκ)Yκ ′Cp,κ ′)

P2,2
, (A.21)

P −1
2,κ+5 =

∑N
κ ′=1(p/ρR)(W̄/Wκ)Yκ ′Cp,κ ′ − hκ

P2,2
, κ = 1, . . . , N. (A.22)

Subsequently, matrix Q1 given by (A.6) can be written as

Q1 =




u1 0 ρ 0 0 0 · · · · · · 0
P2,1u1 Q1

2,2 Q1
2,3 ρu1u2 ρu1u3 Q1

2,6 · · · · · · Q1
2,N+5

u2
1 1 2ρu1 0 0 0 · · · · · · 0

u1u2 0 ρu2 ρu1 0 0 · · · · · · 0
u1u3 0 ρu3 0 ρu1 0 · · · · · · 0
u1Y1 0 ρY1 0 0 ρu1 0 · · · 0

u1Y2 0 ρY2 0 0 0
. . . · · · 0

...
...

...
...

...
...

. . .
. . .

...

u1YN 0 0 ρYN 0 0 · · · 0 ρu1




, (A.23)

where elements

Q1
2,2 = (P2,2 + 1)u1, (A.24)

Q1
2,3 = (ρet + p) + ρu2

1, (A.25)

Q1
2,κ+5 = u1

(
ρhκ −

N∑
κ ′=1

p
W̄

Wκ

Yκ ′
Cp,κ ′

R

)
, κ = 1, . . . , N. (A.26)

Following (A.9), matrix A1 can then be formed and is given by

A−1 =




u1 0 ρ 0 0 0 · · · · · · · · · 0

0 u1 p

(
C̄p

C̄p − R

)
0 0 0 0 · · · · · · 0

0
1

ρ
u1 0 0 0 0 · · · · · · 0

0 0 0 u1 0 0 0 · · · · · · 0
0 0 0 0 u1 0 0 · · · · · · 0
0 0 0 0 0 u1 0 · · · · · · 0
0 0 0 0 0 0 u1 0 · · · 0
...

...
...

...
...

...
. . .

. . .
. . .

...

0 0 0 0 0 · · · · · · · · · u1 0
0 0 0 0 0 0 · · · · · · 0 u1




. (A.27)
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728 W Pakdee and S Mahalingam

Primitive equations can then be formed as in (A.8) with the eigenvalues of A1:

λ1 = u1 − c,

λ2 = u1,

λ3 = u1,

λ4 = u1,

λ5 = u1 + c,

λ6 = u1,

... = ...

λN+5 = u1,

(A.28)

where c is the speed of sound in the reacting gas mixture, defined as

c =
√

γRT . (A.29)

The specific heat ratio γ in (A.29) is given by

γ = C̄p

C̄p − R
. (A.30)

The corresponding left eigenvectors of dimension 1 × (N + 5) are

lT
1 = (0, 1, −ρc, 0, 0, . . . , 0),

lT
2 =

(
0, u1 − c, p

(
C̄p

C̄p − R

)
− ρcu1, 0, . . . , 0

)
,

lT
3 = (0, 0, 0, 1, 0, 0, . . . , 0),

lT
4 = (0, 0, 0, 0, 1, 0, . . . , 0),

lT
5 = (0, 1, ρc, 0, 0, . . . , 0),

lT
6 = (0, 0, 0, 0, 0, 1, 0, . . . , 0),

lT
7 = (0, 0, . . . , 0, 1, 0, 0, 0, 0),

lT
8 = (0, 0, . . . , 0, 0, 1, 0, 0, 0),

... = ...

lT
N+5 = (0, 0, . . . , 0, 1).

(A.31)

The above eigenvectors are used to define the characteristic wave amplitudes Li in (A.11).

References

[1] Thompson K W 1987 Time dependent boundary conditions for hyperbolic systems J. Comput. Phys. 68 1–24
[2] Lele S K 1992 Compact finite difference schemes with spectral-like resolution J. Comput. Phys. 103 16–42
[3] Poinsot T J, Veynante D and Candel S 1991 Quenching processes and premixed turbulent combustion diagrams

J. Fluid Mech. 228 561–606
[4] Poinsot T J and Lele S K 1992 Boundary conditions for direct simulations of compressible viscous flows

J. Comput. Phys. 101 104–29
[5] Thompson K W 1990 Time-dependent boundary conditions for hyperbolic systems II J. Comput. Phys. 89

439–61
[6] Kreiss H-O 1970 Initial boundary value problems for hyperbolic systems Commun. Pure Appl. Math. 23 277–98
[7] Higdon R 1986 Initial-boundary value problems for linear hyperbolic systems SIAM Rev. 28 177–217
[8] Engquist B and Majda A 1977 Absorbing boundary conditions for numerical simulations of waves Math. Comput.

31 629
[9] Baum M, Poinsot T and Thevenin D 1994 Accurate boundary conditions for multicomponent reactive flows

J. Comput. Phys. 116 247–61

D
ow

nl
oa

de
d 

by
 [

T
ha

m
m

as
at

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 2
3:

45
 1

4 
M

ar
ch

 2
01

2 



Method to implement boundary conditions 729

[10] Okong’o N and Bellan J 2002 Consistent boundary conditions for multicomponent real gas mixtures based on
characteristic waves J. Comput. Phys. 176 330–44

[11] Oliger J and Sundtröm A 1978 Theoretical and practical aspects of some initial boundary value problems in
fluid dynamics SIAM J. Appl. Math. 35 419–34

[12] Rudy D H and Strikwerda J C 1980 A nonreflecting outflow boundary condition for subsonic Navier–Stokes
calculations J. Comput. Phys. 36 55–70

[13] Rudy D H and Strikwerda J C 1981 Boundary conditions for subsonic compressible Navier–Stokes calculations
Comput. Fluids. 9 327–38

[14] Guichard L, Vervisch L and Domingo P 1995 Two dimensional weak-shock vortex interaction in mixing zone
AIAA J. 33 10

[15] Smooke M D and Giovangigli V 1991 Reduced kinetic mechanisms for asymptotic approximations for methane–
air flames Lecture Notes in Physics no 384 (Berlin: Springer) 1

[16] Colonius T, Lele S and Moin P 1993 Boundary conditions for direct computation of aerodynamic sound
generation AIAA J. 31 1574–82
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